国内疫情可视化

import requests
import json
import re
import pandas as pd
import time
from pyecharts.components import Table
from pyecharts import options as opts
from pyecharts.charts import Bar, Page,Pie,Line,Timeline,Map
from pyecharts.commons.utils import JsCode
from pyecharts.options import DataZoomOpts,ComponentTitleOpts





def Get_HTML():
    headers = {'User-Agent': 'Mozilla/5.0'}
    url = 'https://m.look.360.cn/events/feiyan?sv=&version=&market=&device=2&net=4&stype=&scene=&sub_scene=&refer_scene=&refer_subscene=&f=jsonp&location=true&sort=2&_=1649252949072&callback=jsonp2'
    try:
        r = requests.get(url, headers=headers)
        r.raise_for_status()
        r.encoding = r.apparent_encoding
        re = r.text[7:-2]
        response = json.loads(re)
        return response
    except:
        print("error!")
def China_data_Total():
    url='http://m.look.360.cn/subject/400?sign=360_6aa05217'
    headers={'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:99.0) Gecko/20100101 Firefox/99.0'}
    html = requests.get(url, headers=headers).text
    pattern=re.compile('"qcmsint1":"0"},"feiyanTrend":(.*),"local":',re.S)
    item=re.findall(pattern,html)
    response=json.loads(item[0])
    data = {
        "截止日期":response['total']['modifyTime'],
        "现存确诊":response['total']['currentConfirmed'],
        "境外输入":response['total']['overseasInput'],
        "现存无症状":response['total']['asymptom'],
        "累计确诊":response['total']['diagnosed'],
        "累计治愈":response['total']['cured'],
        "累计死亡":response['total']['died'],
        "现存_较昨日":response['newDiff']['currentConfirmed'],
        "境外输入_较昨日":response['newDiff']['overseasInput'],
        "无症状_较昨日":response['newDiff']['asymptom'],
        "累计_较昨日":response['newDiff']['diagnosed'],
        "治愈_较昨日":response['newDiff']['cured'],
        "死亡_较昨日":response['newDiff']['died']
    }
    return data
# 国内数据
def China_data(response):
    P_name, P_Ljqz, P_Cured, P_Died, P_Xcqz, P_Xzqz = [], [], [], [], [], []    #省数据
    C_name, C_Ljqz, C_Cured, C_Died, C_Xcqz, C_Xzqz = [], [], [], [], [], []    #市数据
    for i in range(34):
        P_name.append(response['data'][i]['cityShortName'])  # 城市名称
        P_Ljqz.append(response['data'][i]['diagnosed'])  # 累计确诊
        P_Cured.append(response['data'][i]['cured'])  # 治愈
        P_Died.append(response['data'][i]['died'])  # 死亡
        P_Xcqz.append(response['data'][i]['currentConfirmed'])  # 现存确诊
        P_Xzqz.append(response['data'][i]['diffDiagnosed'])  # 新增确诊
    data = {
        "地区": P_name,
        "新增确诊": P_Xzqz,
        "现存确诊": P_Xcqz,
        "累计确诊": P_Ljqz,
        "治愈人数": P_Cured,
        "死亡人数": P_Died,
    }
    return data

#河南省数据
def Henan_data():
    url = 'https://m.look.360.cn/events/feiyanCityInfo?sv=&version=&market=&device=2&net=4&stype=&scene=&sub_scene=&refer_scene=&refer_subscene=&f=jsonp&ename=henan&_=1650426134574&callback=jsonp4'
    headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:99.0) Gecko/20100101 Firefox/99.0'}
    html = requests.get(url, headers=headers).text[7:-2]
    response=json.loads(html)
    # print(response['data']['cityInfo'])
    C_name, C_Ljqz, C_Cured, C_Died, C_Xcqz, C_Xzqz = [], [], [], [], [], []  # 市数据
    for i in range(len(response['data']['cityInfo'])):
        C_name.append(response['data']['cityInfo'][i]['cityName'])   #名称
        C_Ljqz.append(response['data']['cityInfo'][i]['diagnosed'])  # 累计确诊
        C_Cured.append(response['data']['cityInfo'][i]['cured'])  # 治愈
        C_Died.append(response['data']['cityInfo'][i]['died'])  # 死亡
        C_Xzqz.append(response['data']['cityInfo'][i]['diffDiagnosed'])  # 新增确诊
    data = {
        "地区": C_name,
        "新增确诊": C_Xzqz,
        "累计确诊": C_Ljqz,
        "治愈人数": C_Cured,
        "死亡人数": C_Died
    }
    return data

def Abroad_data(response):  # 国外数据
    C_name, Ljqz, Cured, Died, Xcqz, Xzqz = [], [], [], [], [], []
    for i in range(196):
        c_name = response['country'][i]['provinceName']  # 城市名称
        ljqz = response['country'][i]['diagnosed']  # 累计确诊
        cured = response['country'][i]['cured']  # 治愈
        died = response['country'][i]['died']  # 死亡
        xzqz = response['country'][i]['diffDiagnosed']  # 新增确诊
        C_name.append(c_name)
        Ljqz.append(ljqz)
        Cured.append(cured)
        Died.append(died)
        Xzqz.append(xzqz)
    data = {
        "地区": C_name,
        "新增确诊": Xzqz,
        "累计确诊": Ljqz,
        "治愈人数": Cured,
        "死亡人数": Died
    }
    return data

def TimeLine():
    headers = {'User-Agent': 'Mozilla/5.0'}
    url = 'https://api.look.360.cn/events/feiyanHomeMulTrend?sv=&version=&market=&device=2&net=4&stype=&scene=&sub_scene=&refer_scene=&refer_subscene=&f=jsonp&_=1650032782170&callback=jsonp3'
    try:
        r = requests.get(url, headers=headers)
        r.raise_for_status()
        r.encoding = r.apparent_encoding
        re = r.text[7:-2]
        response = json.loads(re)
    except:
        print("error!")
    time,Ljqz, Cured, Died, Xcqz, Xzqz, Xz_Died, Xz_Cured= [], [], [], [], [], [], [], []
    for i in range(len(response['data']['timeline_n1'])):
        time.append(response['data']['timeline_n1'][i]['time'])         #时间
        Xzqz.append(response['data']['timeline_n1'][i]['diagnosed'])    #新增确诊
        Xcqz.append(response['data']['timeline_n2'][i]['total_currentConfirmed']) #现存确诊
        Ljqz.append(response['data']['timeline_n2'][i]['total_diagnosed'])   #累计确诊
        Cured.append(response['data']['timeline_n3'][i]['total_cured'])      #累计治愈
        Died.append(response['data']['timeline_n3'][i]['total_died'])      #累计死亡
        Xz_Died.append(response['data']['timeline_n4'][i]['died'])        #新增死亡
        Xz_Cured.append(response['data']['timeline_n4'][i]['cured'])      #新增治愈
    data={
        "时间":time,
        "新增确诊":Xzqz,
        "现存确诊":Xcqz,
        "累计确诊":Ljqz,
        "累计治愈":Cured,
        "累计死亡":Died,
        "新增死亡":Xz_Died,
        "新增治愈":Xz_Cured
    }
    return data

def View(data_1,data_2,data_3,data_4):
    #柱状图
    c_1 = Timeline(init_opts=opts.InitOpts(chart_id='1'))
    c_1.add_schema(play_interval=1000,
                   label_opts=opts.series_options.LabelOpts(color='#cfe2f3'),is_auto_play = True)
    for i in range(3):
        #全国累计详情柱状图
        C_1 = (
            Bar()
                .add_xaxis(data_1['地区'][i*11:(i+1)*11])
                .add_yaxis("累计确诊", data_1['累计确诊'][i*11:(i+1)*11],stack='stack1',label_opts=opts.LabelOpts(is_show=False))
                .add_yaxis("新增确诊", data_1['新增确诊'][i*11:(i+1)*11],stack='stack1',label_opts=opts.LabelOpts(is_show=False))
                .add_yaxis("死亡人数", data_1['死亡人数'][i * 11:(i + 1) * 11],stack='stack1',label_opts=opts.LabelOpts(is_show=False))
                .add_yaxis("治愈人数", data_1['治愈人数'][i * 11:(i + 1) * 11],stack='stack1',label_opts=opts.LabelOpts(is_show=False))
                .add_yaxis("现存确诊", data_1['现存确诊'][i * 11:(i + 1) * 11],stack='stack1',label_opts=opts.LabelOpts(is_show=False))
                .reversal_axis()
                # .set_global_opts(legend_opts=opts.LegendOpts(selected_mode='single'))  # 单选模式
            .set_global_opts(xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color='white')),#调整x轴字体颜色
                                yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color='white')),
                             legend_opts=opts.LegendOpts(selected_mode='single'),
                             title_opts=opts.TitleOpts("国内疫情详情",pos_right=0,pos_top=20,title_textstyle_opts=opts.TextStyleOpts(font_size=13,color="#cfe2f3")))
        )
        c_1.add(C_1, "第{}页".format(i+1))
        # 全国地图
    c_2 = (
            Map(init_opts=opts.InitOpts(chart_id='2'))
                # .add("死亡人数", [list(z) for z in zip(data_1['地区'], data_1['死亡人数'])], "china",is_selected=False)        #默认关闭该标签
                .add("累计确诊",[list(z) for z in zip(data_1['地区'], data_1['累计确诊'])], "china")
                .add("死亡人数", [list(z) for z in zip(data_1['地区'], data_1['死亡人数'])], "china")
                .add("治愈人数", [list(z) for z in zip(data_1['地区'], data_1['治愈人数'])], "china")
                .add("新增确诊", [list(z) for z in zip(data_1['地区'], data_1['新增确诊'])], "china")
                .add("现存确诊", [list(z) for z in zip(data_1['地区'], data_1['现存确诊'])], "china")
                .set_global_opts(
                title_opts=opts.TitleOpts(""),
                visualmap_opts=opts.VisualMapOpts(max_=10000),
                legend_opts=opts.LegendOpts(selected_mode='single')    #单选模式
            )
        )
        #时间线折线图
    c_3 = (
            Line(init_opts=opts.InitOpts(chart_id='3'))
                .add_xaxis(data_3['时间'])
                .add_yaxis("新增确诊",data_3['新增确诊'],label_opts=opts.LabelOpts(is_show=False),linestyle_opts=opts.LabelOpts(color='#DC143C'))
                .add_yaxis("现存确诊",data_3['现存确诊'],label_opts=opts.LabelOpts(is_show=False),linestyle_opts=opts.LabelOpts(color='#a98175'))
                .add_yaxis("累计确诊",data_3['累计确诊'], label_opts=opts.LabelOpts(is_show=False),linestyle_opts=opts.LabelOpts(color='#60281e'))
                .add_yaxis("累计治愈",data_3['累计治愈'], label_opts=opts.LabelOpts(is_show=False),linestyle_opts=opts.LabelOpts(color='#2add9c'))
                .add_yaxis("累计死亡",data_3['累计死亡'], label_opts=opts.LabelOpts(is_show=False),linestyle_opts=opts.LabelOpts(color='black'))
                .add_yaxis("新增死亡",data_3['新增死亡'], label_opts=opts.LabelOpts(is_show=False),linestyle_opts=opts.LabelOpts(color='#758a99'))
                .add_yaxis("新增治愈",data_3['新增治愈'], label_opts=opts.LabelOpts(is_show=False),linestyle_opts=opts.LabelOpts(color='#1bd1a5'))
                .set_global_opts(
                title_opts=opts.TitleOpts(title="疫情汇总时间线",pos_top=20,title_textstyle_opts=opts.TextStyleOpts(font_size=13,color="#cfe2f3")),
                tooltip_opts=opts.TooltipOpts(trigger="axis"),
                xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color='white')),  # 调整x轴字体颜色
                yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color='white')),
                legend_opts=opts.LegendOpts(selected_mode='single')
            )
        )
        #河南省地图
    c_4 = (
            Map(init_opts=opts.InitOpts(chart_id='4'))
                # .add("死亡人数", [list(z) for z in zip(data_1['地区'], data_1['死亡人数'])], "china",is_selected=False)        #默认关闭该标签
                .add("累计确诊", [list(z) for z in zip(data_4['地区'], data_4['累计确诊'])], "河南")
                .add("死亡人数", [list(z) for z in zip(data_4['地区'], data_4['死亡人数'])], "河南")
                .add("治愈人数", [list(z) for z in zip(data_4['地区'], data_4['治愈人数'])], "河南")
                .add("新增确诊", [list(z) for z in zip(data_4['地区'], data_4['新增确诊'])], "河南")

                .set_global_opts(
                title_opts=opts.TitleOpts(title='省内详细信息',pos_top=30,title_textstyle_opts=opts.TextStyleOpts(font_size=13, color="#cfe2f3")),
                visualmap_opts=opts.VisualMapOpts(max_=500),
                legend_opts=opts.LegendOpts(selected_mode='single')  # 单选模式
            )
        )
        #省内死亡详情饼图
    c_5 = (
            Pie(init_opts=opts.InitOpts(chart_id='5'))
                .add("死亡人数", [list(z) for z in zip(data_4['地区'], data_4['死亡人数'])])
                .set_global_opts(title_opts=opts.TitleOpts('市死亡人数',title_textstyle_opts=opts.TextStyleOpts(font_size=13, color="gray"),),
                                 legend_opts=opts.LegendOpts(is_show=False))
                # .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"),)
        )
    # 汇总数据与昨日相比
    data = China_data_Total()
    c_7 = (
        Pie(init_opts=opts.InitOpts(chart_id='7'))
        .set_global_opts(
                    title_opts=opts.TitleOpts(
                        title="现存确诊" + " " * 17 + "境外输入" + " " * 17 + "现存无症状", title_textstyle_opts=opts.TextStyleOpts(font_size=10, color="white"), ))
        )
    c_8 = (
        Pie(init_opts=opts.InitOpts(chart_id='8'))
        .set_global_opts(
                    title_opts=opts.TitleOpts(
                        title="累计确诊"+ " " * 17 + "累计治愈"+ " " * 17 + "累计死亡", title_textstyle_opts=opts.TextStyleOpts(font_size=10, color="white"), ))
        )
    c_9 = (
        Pie(init_opts=opts.InitOpts(chart_id='9'))
        .set_global_opts(
                    title_opts=opts.TitleOpts(
                        title=str(data['现存_较昨日']) + " " * 25 + str(data['境外输入_较昨日']) + " " * 25  + str(data['无症状_较昨日']), title_textstyle_opts=opts.TextStyleOpts(font_size=10, color="#e9e7ef"), ))
        )
    c_10 = (
        Pie(init_opts=opts.InitOpts(chart_id='10'))
        .set_global_opts(
                    title_opts=opts.TitleOpts(
                        title=str(data['累计_较昨日']) + " " * 25 + str(data['治愈_较昨日']) + " " * 25+ str(data['死亡_较昨日']), title_textstyle_opts=opts.TextStyleOpts(font_size=10, color="#e9e7ef")))
        )
    #数字
    c_11 = (
        Pie(init_opts=opts.InitOpts(chart_id='16'))
            .set_global_opts(
            title_opts=opts.TitleOpts(
                title=str(data['现存确诊']) + " " * 3 + str(data['境外输入']) + " " * 3 + str(data['现存无症状']),
                title_textstyle_opts=opts.TextStyleOpts(font_size=23, color="#CD3700")))
    )
    c_12 = (
        Pie(init_opts=opts.InitOpts(chart_id='17'))
            .set_global_opts(
            title_opts=opts.TitleOpts(
                title=str(data['累计确诊']) + " " * 3 + str(data['累计治愈']) + " " * 3 + str(data['累计死亡']),
                title_textstyle_opts=opts.TextStyleOpts(font_size=23, color="#7F7F7F")))
    )

    tu_1 = (
        Line(init_opts=opts.InitOpts(width="1500px",
                                     height="850px",
                                     bg_color={"type": "pattern", "image": JsCode("img"), "repeat": "no-repeat"},
                                     chart_id='11'))
            .add_xaxis([None])
            .add_yaxis("", [None])
            .set_global_opts(
            title_opts=opts.TitleOpts(),
            yaxis_opts=opts.AxisOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(is_show=False))
    )

    tu_1.add_js_funcs(
        """
        var img = new Image(); img.src = './images/bg_body.jpg';

        """
    )
    tu_2 = (
        Line(init_opts=opts.InitOpts(
                                     bg_color={"type": "pattern", "image": JsCode("img"), "repeat": "no-repeat"},
                                     chart_id='12'))
            .add_xaxis([None])
            .add_yaxis("", [None])
            .set_global_opts(
            yaxis_opts=opts.AxisOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(is_show=False))
    )
    tu_2.add_js_funcs(
        """
        var img = new Image(); img.src = './images/bg_box5.png';

        """
    )
    tu_3 = (
        Line(init_opts=opts.InitOpts(chart_id='13',
            bg_color={"type": "pattern", "image": JsCode("img"), "repeat": "no-repeat"},
        ))
            .add_xaxis([None])
            .add_yaxis("", [None])
            .set_global_opts(
            yaxis_opts=opts.AxisOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(is_show=False))
    )
    tu_3.add_js_funcs(
        """
        var img = new Image(); img.src = './images/bg_box5.png';

        """
    )
    tu_4 = (
        Line(init_opts=opts.InitOpts(chart_id='14',
            bg_color={"type": "pattern", "image": JsCode("img"), "repeat": "no-repeat"},
        ))
            .add_xaxis([None])
            .add_yaxis("", [None])
            .set_global_opts(
            yaxis_opts=opts.AxisOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(is_show=False))
    )
    tu_4.add_js_funcs(
        """
        var img = new Image(); img.src = './images/bg_box4.png';

        """
    )
    tu_5 = (
        Line(init_opts=opts.InitOpts(width="1500px",
                                     height="200px",
                                     bg_color={"type": "pattern", "image": JsCode("img"), "repeat": "no-repeat"},
                                     chart_id='15'))
            .add_xaxis([None])
            .add_yaxis("", [None])
            .set_global_opts(
            title_opts=opts.TitleOpts(title="全球疫情信息 截至" + data['截止日期'],
                                      pos_left='center',
                                      title_textstyle_opts=opts.TextStyleOpts(font_size=21, color='#51c2d5'),
                                      pos_top='23%'),
            yaxis_opts=opts.AxisOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(is_show=False))
    )
    tu_5.add_js_funcs(
        """
        var img = new Image(); img.src = './images/bg_title.png';

        """
    )
    page = Page(layout=Page.DraggablePageLayout, page_title="可视化大屏")
    page.add(tu_1,tu_2,tu_3,tu_4,c_1,c_2,c_3,c_4,c_5,c_7,c_8,c_9,c_10,tu_5,c_11,c_12)
    page.render('国内疫情信息.html')

def Style():
    # 固定样式
    Page.save_resize_html(source="./国内疫情信息.html",  # 上面的HTML文件名称
                          cfg_file="chart_config_3.json",  # 保存的json配置文件
                          dest="new_国内疫情信息可视化大屏.html"  # 新HTML文件名称,可以空缺,默认resize_render.html
                          )
def main():
    a=0
    while True:
        data_1 = China_data(Get_HTML())
        data_2 = Abroad_data(Get_HTML())
        data_3 = TimeLine()
        data_4=Henan_data()
        date=China_data_Total()['截止日期']
        if date!=a:
            View(data_1, data_2, data_3,data_4)
            Style()
            a=date

main()

pyechart实现可移动图表

from pyecharts import options as opts
from pyecharts.charts import Bar, Grid, Line, Liquid, Page, Pie
from pyecharts.faker import Faker
from pyecharts.globals import SymbolType

#饼状图
def pie():
    c = (
        Pie()
        .add("", [['跳水', 12], ['射击', 11], ['举重', 8], ['竞技体操', 8], ['乒乓球', 7], ['游泳', 6], ['羽毛球', 6], ['田径', 5], ['静水皮划艇', 3], ['蹦床体操', 3], ['自由式摔跤', 3], ['赛艇', 3], ['空手道', 2], ['拳击', 2], ['帆船', 2], ['花样游泳', 2], ['跆拳道', 1], ['场地自行车赛', 1], ['古典式摔跤', 1], ['击剑', 1], ['三人篮球', 1]],center=["50%", "60%"],)
        .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
#         .render("饼图.html")
        )
    return c
#     return c.render_notebook()

#水滴图
def wb():
    c = (
        Liquid()
        .add("", [0.3, 0.7], is_outline_show=False, shape=SymbolType.DIAMOND)
        .set_global_opts(title_opts=opts.TitleOpts(title="Liquid-Shape-Diamond"))
#         .render("liquid_shape_diamond.html")
        )
    return c
#     return c.render_notebook()

#柱状图
def bar():
    c = (
        Bar()
        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", Faker.values(), stack="stack1")
        .add_yaxis("商家B", Faker.values(), stack="stack1")
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠数据(全部)"))
#         .render("bar_stack0.html")
        )
    return c
#     return c.render_notebook()
page = Page(layout=Page.DraggablePageLayout, page_title="2020东京奥运会奖牌榜")

# 在页面中添加图表
page.add(
    pie(),
    wb(),
    bar())
page.render('test.html')